
WEB APPLICATION 
SCANNERS

Evaluating Past the Base Case



GREG OSE
PATRICK TOOMEY

Presenter Intros



Overview

� An overview of web application scanners

� Why is it hard to evaluate scanner efficacy?

� Prior Work

� Our Analysis� Our Analysis

� Recommendations

� Conclusion



Web App Scanners What, Who, Why

• What products are we considering 
web application scanners?

• What exactly do they do?
What

Who • Who is using web application 
scanners?Who

• Why are these products used
• What makes them attractive to their 
customers?

Why



Scanner Evaluation Challenges

� Large number of products and vendors

� Large range in product price and feature set

� Testing requires a significant effort to reproduce 
real world environment and knowledge of how real world environment and knowledge of how 
vulnerabilities manifest themselves in applications

� No means by which to easily measure one scanners 
vs another.  Some test apps have been developed 
by vendors, but these are likely just geared as 
demos that are ensured to work with the product.



More Evaluation Challenges

� Unless the test app is custom tuned for evaluation 
purposes it is tough to say what is a false positive 
and/or false negative

� Many reviews are more feature specific than � Many reviews are more feature specific than 
efficacy specific

� Those reviews that are efficacy specific often don’t 
provide much sense of why a scanner found or 
didn’t find the known vulnerabilities



Even More Evaluation Challenges

� These tools generate an inordinate amount of 
traffic, which makes it tough to evaluate

� To do a good job of evaluation would take a 
tremendous amount of timetremendous amount of time



Prior Work

� We mentioned it would take a ton of time to fairly 
assess the multitude of scanners that exist, sounds 
like the perfect way to use an NSF Grant!

� UCSB performed the largest evaluation of web � UCSB performed the largest evaluation of web 
applications scanners in July of 2010 

� Conference on Detection of Intrusions and Malware & 
Vulnerability Assessment (DIMVA): “Why Johnny Can't 
Pentest: An Analysis of Black-box Web Vulnerability 
Scanners”



Prior Work

� UCSB paper focused on entire lifecycle of web 
application scanner use (crawling, attacking, and 
analyzing the results)

� Analyzed a suite of vulnerability classes (largely � Analyzed a suite of vulnerability classes (largely 
focused around OWASP class of vulnerabilities)

� Analyzed 11 different commercial and open source 
scanners



Their Coverage

� XSS                  
(reflected and stored)

� SQL Injection (first and 
second order)

� Weak Passwords

� Directory Traversal

� Logic Flaws

� JavaScript Obstaclessecond order)

� Code Injection  
(command injection and 
file inclusion)

� Access Control

� Session IDs

� JavaScript Obstacles



Findings

� Half the vulnerabilities were not identified by any 
scanner

� Cost did not correlate with number of identified 
vulnerabilitiesvulnerabilities

� Crawling is critical (particularly as the ubiquity of 
JavaScript marches forward)



Questions We Asked Ourselves

� Half the vulnerabilities were missed, mostly classes of 
vulnerabilities that present day scanners are wholly 
unsuited for.  What if instead of focusing on what we 
know they are bad at, we restricted ourselves to what 
scanners are “good” at?scanners are “good” at?

� For the things scanners should be good at, how far from 
the base-case do you need to get before the scanner is 
unable to reliably find a class of vulnerability?

� What is the take away from the above two questions 
for the average company that uses these scanners?



Typical List of Vulns

� Cross Site Scripting

� SQL Injection

� Insecure Cryptographic 
Storage

� Insufficient Transport Layer 

� Broken 
Authentication/Session 
Management

� Insecure Direct Object 
Reference

Information Leakage
� Insufficient Transport Layer 
Protection

� Failure to Restrict URL 
Access

� CSRF

� Unvalidated Redirects

� Security Misconfiguration

� Information Leakage

� Logic Vulnerabilities

� Malicious File Execution



Difficulty of Automated Detection

Cross Site Scripting Insecure Cryptographic 
Storage

Insufficient Transport 
Layer Protection

SQL Injection Failure to Restrict URL 
Access (Forced Browsing)

Increasing Difficulty of Vulnerability Detection

Unvalidated Redirects CSRF

Security Misconfiguration

Authentication/Session 
Management

Insecure Direct Object Reference

Logical Vulnerabilities

Malicious File Execution



Our Focus

� Stored XSS

� Blind SQL Injection

� Broken Authentication/Session Management

� Insecure Direct Object Reference (external control � Insecure Direct Object Reference (external control 
of file path)



Our Assumptions/Hypothesis

� Scanners will perform admirably under the base 
case for the set of vulnerabilities under evaluation

� The reason scanners typically do not identify 
vulnerabilities for which they should be well suited is vulnerabilities for which they should be well suited is 
due to “real world” variations



Our Analysis

� Create a set of trivial test cases for each of the 
vulnerabilities under evaluation

� Perform a scan for each test case independently, 
recording traffic for each scan

� Validate positive identification of the “base case” for 
each vulnerability class

� Validate positive identification of the “base case” for 
each vulnerability class

� Modify each test case to incorporate “real-world” 
obstacles

� Repeat until scanning no longer was able to identify the 
vulnerability

� Analyze Results



Full Disclosure

� We restricted ourselves to the two commercial 
scanners that we had immediate access to (both 
scored in the top half of the UCSB evaluation)

� As a result, our coverage is not full, though we � As a result, our coverage is not full, though we 
believe the insights gained are relevant regardless 
of the scanner under evaluation  



Configuration

� During testing we received differing results across 
scanning runs

� We realized that some configuration options were 
set in a way that limited the number of tests set in a way that limited the number of tests 
performed per input

� Once configuration changed, all of the selected 
tests were actually run



Base Case Stored XSS

� Request: 

� http://site.com?var1=xssdata

� Response:                                                           

� <a href=“viewpost?var1=16”>clickme</a>� <a href=“viewpost?var1=16”>clickme</a>

� Request: 

� http://site.com/viewpost?var1=16

� Response:                                                           

�…xssdata…



Result

� Neither scanner Identified the vulnerability

� Why?
� The dynamic ID returned from the POST was never used in 
subsequent fuzzing requests

� Takeaway:� Takeaway:
� The scanners would not identify stored XSS (or any test 
requiring state) unless, by chance, another page is already 
queued to be fuzzed that happens to use the XSS data 
stored to the database. 

� Content that is generated and requires specific identifiers to 
access will not be visited if it is not accessed during initial 
crawl.



Easier Base Case Stored XSS

� Request: 

� http://site.com?var1=xssdata

� Response:                                                           

� <a href=“viewposts”>click</a>� <a href=“viewposts”>click</a>

� Request: 

� http://site.com/viewposts

� Response:                                                           

�….xssdata…



Result

� One scanner Identified the vulnerability (the less expensive 
one)

� Why?

� The URL returned to view all the data stored in the database did 
not contain a dynamic parameter, and thus one of the scanners 
never visited the page after XSS data was injected.
not contain a dynamic parameter, and thus one of the scanners 
never visited the page after XSS data was injected.

� Takeaway:

� Scanners try to optimize the number of pages visited to reduce 
scan times.  This optimization can lead to reduced coverage and, 
as a side effect, an increased false negative rate.  

� Pages without dynamic parameters are not tested by the scanner, 
even if these pages contain dynamic content



We Can’t Make This Easier Base Case 
Stored XSS

� Request: 

� http://site.com?var1=xssdata

� Response:                                                              

� <a href=“viewposts?dummy=foo”>click</a>� <a href=“viewposts?dummy=foo”>click</a>

� Request: 

� http://site.com/viewposts?dummy=foo

� Response:                                                              

�…xssdata…



Result

� Both scanners identified that XSS existed, but only one 
associated the identification of stored XSS to an input 
variable

� Why?
� Your guess is as good as ours.  The scanners used unique � Your guess is as good as ours.  The scanners used unique 
injections, which should allow them to trace the output back 
to an original input.  

� Takeaway:
� While both scanners eventually found the vulnerability, one 
of scanners required customizations to the configuration to 
increase some of the limits placed on testing requests.



Base Case Blind SQL Injection

� Request: 
� http://site.com?query=foo1

� Response: 
� <li>Result Found</li>                                                       

� Request: 
� http://site.com?query=foo1’ and ‘1’=‘2

� Response: 
� <li>Result Not Found</li>                                                       

� Request: 
� http://site.com?query=foo1’ and ‘1’=‘1

� Response: 
� <li>Result Found</li>                                                       



Result

� Neither scanner Identified the vulnerability

� Why?
� At first we blamed one scanner’s false negative on not using valid 
MySQL comment characters (so much for all those requests)

� Further investigation showed that, both scanners sent a valid test of ‘ and 
‘a’=‘a in addition to ‘ and ‘a’=‘b, but both failed to successfully use that 
knowledge to flag the findingknowledge to flag the finding

� After debugging this issue, it appears that both scanners would not 
report blind SQL injection if the positive and negative response only 
differed by a small amount of data, a 3 byte difference in our case

� Takeaway:
� To avoid flagging false positives, the scanners have a tolerance built into 
how they detect differences in response.  This however may miss critical 
differences that can be used to identify blind SQL injection.



Verbose Base Case Blind SQL Injection

� Request: 

� http://site.com?query=foo1

� http://site.com?query=foo1’ and ‘1’=‘1

� Response: � Response: 

� AAAAAAAAAAAAAAAAAAAA…<li>Result Found</li>                                                       

� Request: 

� http://site.com?query=foo1’ and ‘1’=‘2

� Response: 

� <li>Result Not Found</li>                                                       



Result

� Both scanners now correctly identified the base case 
blind SQL injection.

� Takeaway

� A difference of at least 10 bytes needs to be returned � A difference of at least 10 bytes needs to be returned 
for both cases for the scanners to identify the 
vulnerability

� In real world situation, it is not always the case that the 
output for a positive and negative response will dffer
by this much



Dynamic Response Blind SQL Injection

� Request: 
� http://site.com?query=foo1

� Response: 
� <li>Result Found…random_data…</li>                                                       

� Request: 
� http://site.com?query=foo1’ and ‘1’=‘2

� Response: 
� <li>Result Not Found…random_data…</li>                                                       

� Request: 
� http://site.com?query=foo1’ and ‘1’=‘1

� Response: 
� <li>Result Found…random_data…</li>                                                       



Result

� One scanner Identified the vulnerability

� Why?
� In an effort to reduce false positives/negatives scanners 
apply heuristics to allow for portions of the page to 
contain dynamic content while still finding/not finding contain dynamic content while still finding/not finding 
the blind injection

� Takeaway:
� Pages that contain dynamic content in responses may 
cause scanners to overlook test cases that depend on 
identifying differences in responses



Error Based SQL Injection

� POST: 

� http://site.com?query=foo1’

� Response: 

� ERROR ERROR ERROR ERROR ERROR� ERROR ERROR ERROR ERROR ERROR

� POST: 

� http://site.com?query=foo1’’

� Response: 

�OK                                                                                     



Result

� Both scanners identified the vulnerability

� Why?

� The tested scanners test to see if an unclosed single tick 
result in an errorresult in an error

� Takeaway:

� The tested scanners are good at correlating injections 
to error messages received by the scanner.  

� But what happens if the word ERROR doesn’t appear in 
the response?



Modified Error Based Blind SQL 
Injection

� POST: 

� http://site.com?query=foo1’

� Response: 

� oh noes bad SQL!        � oh noes bad SQL!        

� POST: 

� http://site.com?query=foo1’’

� Response: 

�OK                                                                                     



Result

� One of the scanners failed to identify this SQL 
injection

� Why?
�One of the scanners depends solely upon “error” 
messages to determine if invalid SQL syntax has was messages to determine if invalid SQL syntax has was 
injected.  For this scanner, a comparison of positive and 
negative responses is not performed.

� Takeaway:
� The failing scanner relies on easily identifiable error 
message to identify this type of blind sql injection.



Timing-based SQL Injection

� POST: 
� http://site.com?query=foo1’ and ‘1’=‘1

� http://site.com?query=foo1’ and ‘1’=‘2

� Response: 
� OK

� POST: � POST: 
� http://site.com?query=foo1’’

� Response: 
� OK                               

� POST:
� http://site.com?query=a' UNION SELECT SLEEP(5) --%20

� Response
� 5 second delay then OK



Result

� Neither scanner identified the SQL injection

� Why?
� The tested scanners do not send test cases for MySQL
timing-based attacks.  The test case for MSSQL was 
attemptedattempted

� Even after configuring the scan to specifically target 
MySQL, no valid MySQL test cases were sent

� Takeaway:
� The tested scanners advertise the ability to target specific 
environment, but never actually tune test cases for these 
environments



Base Case Session Handling

� POST: 

� http://site.com?user=user1&passwd=password

� Response(s): 

� set-cookie: session_id=1� set-cookie: session_id=1

� set-cookie: session_id=2

� set-cookie: session_id=3

� set-cookie: session_id=n

� set-cookie: session_id=n+1



Result

� Neither scanner identified the vulnerability

� Why?
� Apparently no such analysis is being done on the entropy of 
the returned session identifiers.  The UCSB team also noted 
the false negative in their report, though they had the false negative in their report, though they had 
conjectured the failure was due to the scanners never 
attempting to log in as an administrator (where they placed 
their counter based session ID)

� Takeaway:
� The application scanners under evaluation should not be 
used as a means of evaluating the quality of the session 
identifiers used in the application.  



Easier Base Case Session Handling

� POST: 

� http://site.com?user=user1&passwd=password

� Response(s): 

� set-cookie: session_id=user1� set-cookie: session_id=user1

� set-cookie: session_id=user1

� set-cookie: session_id=user1



Result

� Neither scanner identified the vulnerability

� Why?

� Even though one of the scanner has a test case for “Use 
of Repeated Session Tokens”, no tests appear to have of Repeated Session Tokens”, no tests appear to have 
been run to test the trivial session tokens

� Takeaway:

� The application scanners under evaluation should not be 
used as a means of evaluating the quality of the 
session identifiers used in the application.



Base Case External Control of File 
Name or Path

� Request:
� http://site.com?fn=test_file.txt

� Response:
� This is a test download file

� Request:
� http://site.com?fn=test

� Response
� Could not open /hackerhalted/download_files/test

� Request:
� http://site.com?fn=../../../../../../../etc/passwd

� Response:
� The contents of /etc/passwd



Result

� One scanner identified the vulnerability

� Why:
� The unsuccessful scanner appended the directory 
traversal test cases to the original input.  The directory 
traversal attempt was never attempted in place of the traversal attempt was never attempted in place of the 
original input.  This test case would only be valid in 
Windows, where non-existent directories can be 
traversed in to and out of.

� Takeaway:
�While these test cases should be easily tested, flaws in 
implementation could lead to false negatives.



NULL-byte Truncated External Control 
of File Name or Path

� Request:
� http://site.com?fn=test_file

� Response:
� This is a test download file

� Request:
� http://site.com?fn=test

� Response
� Could not open /hackerhalted/download_files/test.txt

� Request:
� http://site.com?fn=../../../../../../../etc/passwd%00

� Response:
� The contents of /etc/passwd



Result

� The previously successful scanner identified the 
vulnerability

� Why:

� NULL-byte termination is a common to eliminate any � NULL-byte termination is a common to eliminate any 
appended file extensions in exploiting vulnerabilities.

� Takeaway:

� Again, base-case external control of filename 
vulnerabilities are identified within automated testing.



“Filtered” External Control of File 
Name or Path

� Request:
� http://site.com?fn=test_file.txt

� Response:
� This is a test download file

� Request:
� http://site.com?fn=../../../../../../../etc/passwd� http://site.com?fn=../../../../../../../etc/passwd

� Response:
� Could not open /hackerhalted/download_files/etc/passwd

� Request:
� http://site.com?fn=....//....//....//....//....//....//....//....//etc/passwd

� Response:
� Content of /etc/passwd



Result

� Neither scanner identified the vulnerability

� Why:
� No test cases were performed to attempt to identify 
common mistakes made when attempting to filter for 
directory traversal characters.directory traversal characters.

� Takeaway:
� The evaluated application scanners do not test for variations 
of the base case test files to reflect common improper 
filtering attempts.  This is something that manual testing, in 
combination with the revealed file path, would be easily 
enumerable by the tester.



Multiple Input External Control of File 
Name or Path

� Request:
� http://site.com?dn=test_dir&fn=test_file.txt

� Response:
� This is a test download file

� Request:
� http://site.com?dn=../../test1&fn=../../test2

� Response:
� Could not open /hackerhalted/download_files/../../test1/test2

� Request:
� http://site.com?dn=../../../../../../../etc&fn=passwd

� Response:
� Content of /etc/passwd



Result

� Neither scanner identified the vulnerability

� Why:
� The scanners do not successfully test multiple parameters in 
unison to identify vulnerabilities that may result in the 
fuzzing of more than one input.fuzzing of more than one input.

� Takeaway:
� Vulnerabilities that require multiple parameters to be 
utilized together will not be identified.  

� To perform testing of this nature would exponentially 
increase the number of requests required to complete the 
tests.



Conclusions

� Configuration matters

� State changes between crawl and test impact results

� Pages with non-dynamic parameters likely won’t be 
tested

A number of environmental specific test cases may not � A number of environmental specific test cases may not 
be tried

� We found tests largely ignore common filtering evasion 
techniques

� We found tests do not try to fuzz multiple parameters 
concurrently 


